Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and Innate Immunity by the Regulatory Receptor-Like Kinase BAK1
نویسندگان
چکیده
Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe the differential regulation of three different BAK1-dependent signaling pathways by a novel allele of BAK1, bak1-5. Innate immune signaling mediated by the BAK1-dependent RKs FLS2 and EFR is severely compromised in bak1-5 mutant plants. However, bak1-5 mutants are not impaired in BR signaling or cell death control. We also show that, in contrast to the RD kinase BRI1, the non-RD kinases FLS2 and EFR have very low kinase activity, and we show that neither was able to trans-phosphorylate BAK1 in vitro. Furthermore, kinase activity for all partners is completely dispensable for the ligand-induced heteromerization of FLS2 or EFR with BAK1 in planta, revealing another pathway specific mechanistic difference. The specific suppression of FLS2- and EFR-dependent signaling in bak1-5 is not due to a differential interaction of BAK1-5 with the respective ligand-binding RK but requires BAK1-5 kinase activity. Overall our results demonstrate a phosphorylation-dependent differential control of plant growth, innate immunity, and cell death by the regulatory RLK BAK1, which may reveal key differences in the molecular mechanisms underlying the regulation of ligand-binding RD and non-RD RKs.
منابع مشابه
The Leucine-Rich Repeat Receptor Kinase BIR2 Is a Negative Regulator of BAK1 in Plant Immunity
BACKGROUND Transmembrane leucine-rich repeat (LRR) receptors are commonly used innate immune receptors in plants and animals but can also sense endogenous signals to regulate development. BAK1 is a plant LRR-receptor-like kinase (RLK) that interacts with several ligand-binding LRR-RLKs to positively regulate their functions. BAK1 is involved in brassinosteroid-dependent growth and development, ...
متن کاملRegulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis.
Upon recognition of bacterial flagellin, the plant receptor FLS2 heterodimerizes with brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and activates plant defense responses. Because constitutive activation of defense responses is detrimental, plant resistance signaling pathways must be negatively controlled, although the mechanisms involved are unclear. We identified Arabidopsi...
متن کاملInverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1.
Maintaining active growth and effective immune responses is often costly for a living organism to survive. Fine-tuning the shared cross-regulators is crucial for metazoans and plants to make a trade-off between growth and immunity. The Arabidopsis regulatory receptor-like kinase BAK1 complexes with the receptor kinases FLS2 in bacterial flagellin-triggered immunity and BRI1 in brassinosteroid (...
متن کاملTyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity.
The sessile plants have evolved a large number of receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) to modulate diverse biological processes, including plant innate immunity. Phosphorylation of the RLK/RLCK complex constitutes an essential step to initiate immune signaling. Two Arabidopsis plasma membrane-resident RLKs, flagellin-sensing 2 and brassinosteroid insensitiv...
متن کاملBrassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1.
Plants and animals use innate immunity as a first defense against pathogens, a costly yet necessary tradeoff between growth and immunity. In Arabidopsis, the regulatory leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1 combines with the LRR-RLKs FLS2 and EFR in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and the LRR-RLK BRI1 in brassinosteroid (BR)-mediated growt...
متن کامل